"以Excel程式模擬反應速率" 修訂間的差異

出自 全民科學平台
前往: 導覽搜尋
 
(未顯示同一使用者於中間所作的 4 次修訂)
行 4: 行 4:
 
<br><br>
 
<br><br>
 
</div>
 
</div>
 +
 +
<hr>
  
 
==1.現象說明 ==
 
==1.現象說明 ==
行 9: 行 11:
 
在學習反應速率的過程中,學習者接觸的核心概念包括反應速率常數、反應級數、逆反應等。對於一次反應,我們也介紹其「半衰期」與反應物起始濃度無關(=ln2/k)。Excel程式是學習反應速率的最佳工具,因為我們可以引入「一段極短時間」的概念,改變實驗條件進行探索,計算濃度與時間、反應速率與時間的關係。例如,我們可以紀錄反應物濃度與時間的關係,證明(只有)一次反應之半衰期與反應物起始濃度無關。當正反應和逆反應同時發生時,我們可以學習到化學平衡是「正反應速率和逆反應速率相等」的結果。
 
在學習反應速率的過程中,學習者接觸的核心概念包括反應速率常數、反應級數、逆反應等。對於一次反應,我們也介紹其「半衰期」與反應物起始濃度無關(=ln2/k)。Excel程式是學習反應速率的最佳工具,因為我們可以引入「一段極短時間」的概念,改變實驗條件進行探索,計算濃度與時間、反應速率與時間的關係。例如,我們可以紀錄反應物濃度與時間的關係,證明(只有)一次反應之半衰期與反應物起始濃度無關。當正反應和逆反應同時發生時,我們可以學習到化學平衡是「正反應速率和逆反應速率相等」的結果。
 
<br><br>
 
<br><br>
==2探究問題 ==
+
==2.探究問題 ==
  
 
利用Excel程式,改變實驗條件,包括反應物濃度、反應級數、逆反應等,讓學習者深入了解反應速率及平衡。教師可視時間多寡,使用電腦教室讓同學一次或分次自行完成Excel程式,或讓同學使用已完成的程式。過程中探究:
 
利用Excel程式,改變實驗條件,包括反應物濃度、反應級數、逆反應等,讓學習者深入了解反應速率及平衡。教師可視時間多寡,使用電腦教室讓同學一次或分次自行完成Excel程式,或讓同學使用已完成的程式。過程中探究:
行 19: 行 21:
 
==3.實作項目 ==
 
==3.實作項目 ==
  
*3.1設定「時間差」(△t)及「時間軸」,設定一次反應之起始濃度[A]<sub>0</sub>(2.0M)及速率常數k(0.3s<sup>-1</sup>):
+
*3.1 設定「時間差」(t)及「時間軸」,設定一次反應 (參考答案如下,實作中讓同學以不同的實驗條件操作)  
 
+
::::::<img style="width:100px;" src='https://upload.wikimedia.org/wikipedia/commons/c/cc/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.1.png'/>
:::::<img style="width:250px;" src='https://upload.wikimedia.org/wikipedia/commons/e/ec/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%871.png'/>
+
::之起始濃度<img style="width:50px;" src='https://upload.wikimedia.org/wikipedia/commons/7/7d/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.2.png'/>及速率常數<img style="width:50px;"  
::如圖,設△t = 0.1s,作時間軸
+
src='https://upload.wikimedia.org/wikipedia/commons/e/ee/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.3.png'/>
                                                                                                               
+
::<img style="height:350px;" src='https://upload.wikimedia.org/wikipedia/commons/c/ce/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.png'/>
::<img style="height:300px;" src='https://upload.wikimedia.org/wikipedia/commons/c/ce/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.png'/>
 
 
 
*3.2 計算反應物濃度及反應速率
 
 
 
::對於一次反應, 每經過△t時間,反應速率為:
 
 
 
::::<img style="width:250px;" src='https://upload.wikimedia.org/wikipedia/commons/7/76/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%873.png'/>
 
::因此時間t+△t時的反應物濃度為時間t的反應物濃度加上反應量k x[A]x△t :
 
::::::[A]<sub>t+△t</sub>=[A]<sub>t</sub>+k x[A]<sub>t</sub>  x△t (如下圖)
 
<br><br>
 
  
::<img style="height:300px;" src='https://upload.wikimedia.org/wikipedia/commons/d/d2/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%874.png'/>
+
*3.2計算反應物濃度及反應速率:
<br><br>
+
::<img style="width:700px;" src='https://upload.wikimedia.org/wikipedia/commons/5/58/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.5.png'/>
 +
::<img style="height:350px;" src='https://upload.wikimedia.org/wikipedia/commons/d/d2/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%874.png'/>
 
::以反應物濃度對時間作圖如下:
 
::以反應物濃度對時間作圖如下:
 
+
::<img style="height:350px;" src='https://upload.wikimedia.org/wikipedia/commons/6/61/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%875.png'/>
::<img style="height:300px;" src='https://upload.wikimedia.org/wikipedia/commons/6/61/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%875.png'/>
 
<br><br>
 
 
::由前述公式我們可以繪出反應速率與時間的關係如下:
 
::由前述公式我們可以繪出反應速率與時間的關係如下:
 +
::<img style="height:350px;" src='https://upload.wikimedia.org/wikipedia/commons/7/72/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%876.png'/>
 +
::<img style="width:800px;" src='https://upload.wikimedia.org/wikipedia/commons/c/cc/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.9.png'/>
  
::<img style="height:300px;" src='https://upload.wikimedia.org/wikipedia/commons/7/72/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%876.png'/>
+
*3.3半衰期
::對於n >1次反應, 每經過△t時間,反應速率為:
 
 
 
::::<img style="width:250px;" src='https://upload.wikimedia.org/wikipedia/commons/8/82/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%877.png'/>
 
::因此時間t+△t時的反應物濃度為時間t的反應物濃度加上反應量k x[A]x△t:
 
:::::::[A]<sub>t+△t</sub>=[A]<sub>t</sub>+k x[A]<sub>t</sub><sup>n</sup>x△t
 
::將一次反應的程式修改(速率常數的單位不同),可得二次三次反應之濃度及反應速率關係圖。
 
 
 
*3.3 半衰期
 
 
 
 
::反應物濃度為原始濃度的二分之一所需的時間,稱為「半衰期」。試分別以反應物起始濃度、速率常數為操縱變因紀錄各反應之半衰期。
 
::反應物濃度為原始濃度的二分之一所需的時間,稱為「半衰期」。試分別以反應物起始濃度、速率常數為操縱變因紀錄各反應之半衰期。
 
<br><br>
 
<br><br>
 +
 
==4.分析與結論 ==
 
==4.分析與結論 ==
 
 
*4.1影響半衰期的因素
 
*4.1影響半衰期的因素
 
 
::起始濃度:
 
::起始濃度:
::以反應物起始濃度為操縱變因,得各次反應半衰期(秒)如下表( k=0.3 )
+
::以反應物起始濃度為操縱變因,得各次反應半衰期(秒)如下表(k=0.3)
 
+
::<img style="width:400px;" src='https://upload.wikimedia.org/wikipedia/commons/4/4c/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.10.png'/>
::<img style="width:250px;" src='https://upload.wikimedia.org/wikipedia/commons/3/33/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%878.png'/>
 
 
<br><br>
 
<br><br>
 
::從表中可以看出,一次反應的半衰期與反應物起始濃度無關,其他反應的半衰期則與起始濃度有關。
 
::從表中可以看出,一次反應的半衰期與反應物起始濃度無關,其他反應的半衰期則與起始濃度有關。
<br><br>
 
 
::一次反應的半衰期:  
 
::一次反應的半衰期:  
 
::以速率常數為操縱變因,反應物起始濃度為 2.0 M,得一次反應半衰期(秒)如下表
 
::以速率常數為操縱變因,反應物起始濃度為 2.0 M,得一次反應半衰期(秒)如下表
 
+
::<img style="width:300px;" src='https://upload.wikimedia.org/wikipedia/commons/1/1e/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.11.png'/>
::<img style="width:250px;" src='https://upload.wikimedia.org/wikipedia/commons/e/ea/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%879.png'/>
 
 
::以半衰期對速率常數作圖,兩者似乎成反比關係,再以半衰期對速率常數之倒數作圖,得到線性關係如下。
 
::以半衰期對速率常數作圖,兩者似乎成反比關係,再以半衰期對速率常數之倒數作圖,得到線性關係如下。
 +
::<img style="height:300px;" src='https://upload.wikimedia.org/wikipedia/commons/9/95/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%872.12.png'/>
 +
<br><br>
  
::<img style="height:300px;" src='https://upload.wikimedia.org/wikipedia/commons/7/70/%E4%BB%A5Excel%E7%A8%8B%E5%BC%8F%E6%A8%A1%E6%93%AC%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%8710.png'/>
 
<br><br>
 
 
==5.教學目標與評量 ==
 
==5.教學目標與評量 ==
  
*5.1能實際撰寫Excel程式、從數據、繪製圖表
+
*5.1  能實際撰寫Excel程式、從數據、繪製圖表
*5.2能從圖表或的結論,並能合理化解釋
+
*5.2 能從圖表或的結論,並能合理化解釋
 
*5.3能從結論做出預測,例如不同起始物濃度時,各級反應之濃度與時間圖關係,各級反應之半衰期變化 。
 
*5.3能從結論做出預測,例如不同起始物濃度時,各級反應之濃度與時間圖關係,各級反應之半衰期變化 。
*5.4能了解「線性相關」之意涵。
+
*5.4 能了解「線性相關」之意涵。
 
<br><br>
 
<br><br>
 
==6.參考資料 ==
 
==6.參考資料 ==
  
*6.1 參考文獻
+
*6.1參考文獻
:反應速率: https://en.wikipedia.org/wiki/Rate_equation  
+
:[1] 反應速率: https://en.wikipedia.org/wiki/Rate_equation
*6.2進階知識
+
*6.2 進階知識
:*6.2.1
+
:*6.1.1 一次反應之半衰期對速率常數之倒數作圖,得到線性關係。試著從這些數據計算直線的平均斜率 m,寫出半衰期與速率常數的關係式(假設截距為零)。
::一次反應之半衰期對速率常數之倒數作圖,得到線性關係。試著從這些數據計算直線的平均斜率 m,寫出半衰期與速率常數的關係式(假設截距為零)。
+
:*6.1.2 碳原子的同位素 14C 半衰期為 5730年,衰變是一次反應。當植物死亡後,其14C 濃度便逐年下降,我們可以藉此判斷化石或古物的年代。例如,每公克的木質化石14C 放射性是每公克現代木質的四分之一,則我們預估該化石來自11460年前的樹木。
:*6.2.2
+
 
::碳原子的同位素 14C 半衰期為 5730年,衰變是一次反應。當植物死亡後,其14C 濃度便逐年下降,我們可以藉此判斷化石或古物的年代。例如,每公克的木質化石14C 放射性是每公克現代木質的四分之一,則我們預估該化石來自11460年前的樹木。
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 
<br><br><br><br><br><br><br>
 
<br><br><br><br><br><br><br>

於 2019年9月24日 (二) 06:25 的最新修訂

化學反應速率與反應物濃度、反應速率常數(rate constant) 、及反應級數(order)有關。藉由Excel程式模擬反應物或產物與時間的關係,經由改變各種實驗條件,了解反應速率的內涵。                  




1.現象說明

在學習反應速率的過程中,學習者接觸的核心概念包括反應速率常數、反應級數、逆反應等。對於一次反應,我們也介紹其「半衰期」與反應物起始濃度無關(=ln2/k)。Excel程式是學習反應速率的最佳工具,因為我們可以引入「一段極短時間」的概念,改變實驗條件進行探索,計算濃度與時間、反應速率與時間的關係。例如,我們可以紀錄反應物濃度與時間的關係,證明(只有)一次反應之半衰期與反應物起始濃度無關。當正反應和逆反應同時發生時,我們可以學習到化學平衡是「正反應速率和逆反應速率相等」的結果。

2.探究問題

利用Excel程式,改變實驗條件,包括反應物濃度、反應級數、逆反應等,讓學習者深入了解反應速率及平衡。教師可視時間多寡,使用電腦教室讓同學一次或分次自行完成Excel程式,或讓同學使用已完成的程式。過程中探究:

  • 2.1 反應速率應如何定義?
  • 2.2 如何在Excel中獲得反應速率?
  • 2.3 如何表示一至三次反應之反應速率式?
  • 2.4 如何計算半衰期?



3.實作項目

  • 3.1 設定「時間差」(t)及「時間軸」,設定一次反應 (參考答案如下,實作中讓同學以不同的實驗條件操作)
之起始濃度及速率常數
  • 3.2計算反應物濃度及反應速率:
以反應物濃度對時間作圖如下:
由前述公式我們可以繪出反應速率與時間的關係如下:
  • 3.3半衰期
反應物濃度為原始濃度的二分之一所需的時間,稱為「半衰期」。試分別以反應物起始濃度、速率常數為操縱變因紀錄各反應之半衰期。



4.分析與結論

  • 4.1影響半衰期的因素
起始濃度:
以反應物起始濃度為操縱變因,得各次反應半衰期(秒)如下表(k=0.3)



從表中可以看出,一次反應的半衰期與反應物起始濃度無關,其他反應的半衰期則與起始濃度有關。
一次反應的半衰期:
以速率常數為操縱變因,反應物起始濃度為 2.0 M,得一次反應半衰期(秒)如下表
以半衰期對速率常數作圖,兩者似乎成反比關係,再以半衰期對速率常數之倒數作圖,得到線性關係如下。



5.教學目標與評量

  • 5.1 能實際撰寫Excel程式、從數據、繪製圖表 。
  • 5.2 能從圖表或的結論,並能合理化解釋 。
  • 5.3能從結論做出預測,例如不同起始物濃度時,各級反應之濃度與時間圖關係,各級反應之半衰期變化 。
  • 5.4 能了解「線性相關」之意涵。



6.參考資料

  • 6.1參考文獻
[1] 反應速率: https://en.wikipedia.org/wiki/Rate_equation
  • 6.2 進階知識
  • 6.1.1 一次反應之半衰期對速率常數之倒數作圖,得到線性關係。試著從這些數據計算直線的平均斜率 m,寫出半衰期與速率常數的關係式(假設截距為零)。
  • 6.1.2 碳原子的同位素 14C 半衰期為 5730年,衰變是一次反應。當植物死亡後,其14C 濃度便逐年下降,我們可以藉此判斷化石或古物的年代。例如,每公克的木質化石14C 放射性是每公克現代木質的四分之一,則我們預估該化石來自11460年前的樹木。